WINNヨR'S STEPS

BY MANU LAW CLASSES

CHAPTER

2

Percentage

Percent: The term 'percent' is derived from the Latin word 'Per centum'. It implies "out of every hundred". Thesymbol '\%' is used to denote percentage. For example, 15\%

A given percentage value can be converted to corresponding fraction by dividing by 100 .
A percentage is a number or ratio expressed as a fraction of 100. It is a proportion per hundred.

1. When we say 35 percent in mathematical notation we write 35%.
2. When we want to express this in mathematical form, 35% means 35 per 100 or ($35 / 100$).

Important: 50% of 20 can be written 20% of 50 as well. You can also exest $\%$ into decimal, $50 \%=0.5$
Conversion of fraction into \%.
To convert fraction into $\%$, we multiply it by $100.1 / 4=(1 / 4) \times 100 \%=25 \%$.
$1 / 3=(1 / 3) \times 100 \%=33(1 / 3) \%$
$1 / 14=(1 / 14) \times 100 \%=(100 / 14) \%=(50 / 7) \%=7(1 / 7) \%$
Note: Never forget to express $\%$ notation in the percentage.
We suggest you that you must learn both tables given below. Tiyto remember these values at least till $1 / 25$

WINNヨ'S STEPS

BY MANU LAW CLASSES
CUET[UG12024

Fraction	Percentage	Fraction	Percentage	Fraction	Percentage
1	100%	$1 / 7$	$14(2 / 7) \%$	$1 / 13$	$7(9 / 13) \%$
$1 / 2$	50%	$1 / 8$	$12(1 / 2) \%$	$1 / 14$	$7(1 / 7) \%$
$1 / 3$	$33(1 / 3) \%$	$1 / 9$	$11(1 / 9) \%$	$1 / 15$	$6(2 / 3) \%$
$1 / 4$	25%	$1 / 10$	10%	$1 / 16$	$6(1 / 4) \%$
$1 / 5$	20%	$1 / 11$	$9(1 / 11) \%$	$1 / 17$	5.88%
$1 / 6$	$16(2 / 3) \%$	$1 / 12$	$8(1 / 3) \%$	$1 / 18$	5.55%
				$1 / 19$	5.26%
				$1 / 20$	5%
				$1 / 21$	4.76%
				$1 / 22$	4.54%
				$1 / 23$	4.35%
				$1 / 24$	4.16%

Conversion of \% into fraction.

To convert \% into fraction, we divide it by 100 . So, we can express in this way:
$100 \%=(100 / 100)=1$
$1 \%=(1 / 100)$
$2 \%=(2 / 100)=(1 / 50)$
$50 \%=50 / 100=1 / 2$
$20 \%=20 / 100=1 / 5$
$10 \%=10 / 100=1 / 10$
$16(2 / 3) \%=(50 / 3) \%=50 /(3 \times 100)=50 / 300=1 / 6$

$1 \%=1 / 100$	$25 \%=1 / 4$	$80 \%=4 / 5$
$2 \%=1 / 50$	$33.33 \%=1 / 3$	$83.33 \%=5 / 6$
$4 \%=1 / 25$	$37.50=3 / 8$	$87.50 \%=7 / 8$
$5 \%=1 / 20$	$40 \%=2 / 5$	$100 \%=1$
$8.33 \%=1 / 12$	$50 \%=1 / 2$	$120 \%=6 / 5$
$10 \%=1 / 10$	$60 \%=3 / 5$	$125 \%=5 / 4$
$12.50 \%=1 / 8$	$62.50=5 / 8$	$133.33 \%=4 / 3$
$16.67 \%=1 / 6$	$66.67 \%=2 / 3$	$150 \%=3 / 2$
$20 \%=1 / 5$	$75 \%=3 / 4$	$175 \%=7 / 4$

Some important conclusions:
If x is a $\%$ more than y , then y is $\left(\frac{a}{100+a} \times 100\right) \%$

If x is $\mathrm{a} \%$ less than y , then y is $\left(\frac{a}{100-a} \times 100\right) \%$

EXAMPLE 1:

If in an examination, the marks secured by Navin are 20% less than that of Pravin, then marks secured by Pravin are how much percent more than Navin's marks?

Solution: $a=20 \%$
According to the above formula; required percentage $=\left(\frac{a}{100-a} \times 100\right) \%=\frac{20}{80} \times 100=25 \%$
If a number is first increased by a $\%$ and then decreased by a $\%$ then the net effect is always a decrease which is equal to a\% of a i.e., $\frac{a^{2}}{100} \%$

EXAMPLE 2:

The salary of a worker is first increased by 5% and then it is decreased by 5%. What is the change in his salary?
Solution: Here $\mathrm{a}=5 \%$
There will be a net decrease; Percent decrease $=\frac{a^{2}}{100} \%=\frac{5^{2}}{100} \%=0.25 \%$
If a quantity is first changed (increased or decreased) by a $\%$ and then changed (increased or decreased) by b\%, then Net change $=\left[\pm a \pm b \pm \frac{(+a)(+b)}{100}\right] \%$ sign of a and b is positive or negative based on whether there is an increase
or decrease or decrease

Net change is an increase or a decrease according to the positive or negative sign, respectivelyfthe final result.

EXAMPLE 3:

The price of an article is first increased 20% and then decreased by 25% due to reduction in sales. Find the net percent change in the final price of the article.
Solution: $a=20 \%, b=25 \%$
Required percentage change $=\left(20-25+\frac{20 \times(-25)}{100}\right) \%=(-5-5) \%=-10 \% ~$
So, there is a net decrease of 10% in the final price of the article as the final result is negative.
If the price of a commodity increases or decreases by a $\%$, then the decrease or increase in consumption, so as not to increase or decrease the expenditure is equal to $\left(\frac{a}{100 \pm a}\right) \times 100 \%$

WIN ${ }^{\text {BIS }}$ STEPS

BY MAN LAW CLASSES

CUET[UG] 2024

COMMON UNIVERSITY ENTRANCE TEST- EXAM CONDUCTED BY NTH
If the population of a town is P and it increases (or decreases) at the rate of $\mathrm{R} \%$ per annum, then
Population after n years $=P\left(1 \pm \frac{R}{100}\right)^{n}$
Population n years ago $=\frac{P}{\left(1 \pm \frac{R}{100}\right)^{n}}$
('+' sign for increment; ‘-' sign for decrement).
Some tricks to calculate faster:
Splitting the percentage into parts Example 4: 51\% of 128.
Solution: 51% of $128=(50+1) \%$ of $128=50 \%$ of $128+1 \%$ of $128=64+1.28=65.28$

EXAMPLE 5:

Find 39% of 12.5
Solution: 39% of $12.5=12.5 \%$ of $39=\frac{1}{8} \times 39=4.875$

O
0

0

